

Innovazioni nelle tecnologie di concentrazione

Qualche acronimo.....per cominciare.

Area	Acronimi		Italiano
Filtrazione	RO	Reverse Osmosis	Osmosi inversa
	HiRO	High Reverse Osmosis	Osmosi avanzata
	RO polishing	Reverse Osmosis Polishing	Separazione acqua da permeato RO
	UF	Ultrafiltration	Ultrafiltrazione
	NF	Nanofiltration	Nanofiltrazione
	MF	Microfiltration	Microfiltrazione
	ED	Electrodialisis	Elettrodialisi
Varie	IEx	Ion Exchange	Scambio ionico
Evaporazione	MVR	Mechanical vapour recompression	Ricompressione meccanica vapori
	TVR	Thermal vapour recompression	Ricompressione termica vapori
Prodotti	WPC	Whey Proteins concentrate	Concentrato di sieroproteine
	WPI	Whey proteins isolate	Isolati di sieroproteine
	DWP	Demineralised whey powders	Polvere di siero demineralizzata
	D40 -70 -90	Partially demineralized whey	Siero parzialmente demineralizzato
	SS		Sostanza secca

DOVE STA ANDANDO IL SIERO?

Una materia seconda che è diventata materia prima.....in alcune realtà casearie internazionali.

Per l'industria alimentare, il siero è una scoperta recente. In meno di una generazione, sono "esplosi" i prodotti ricavabili .

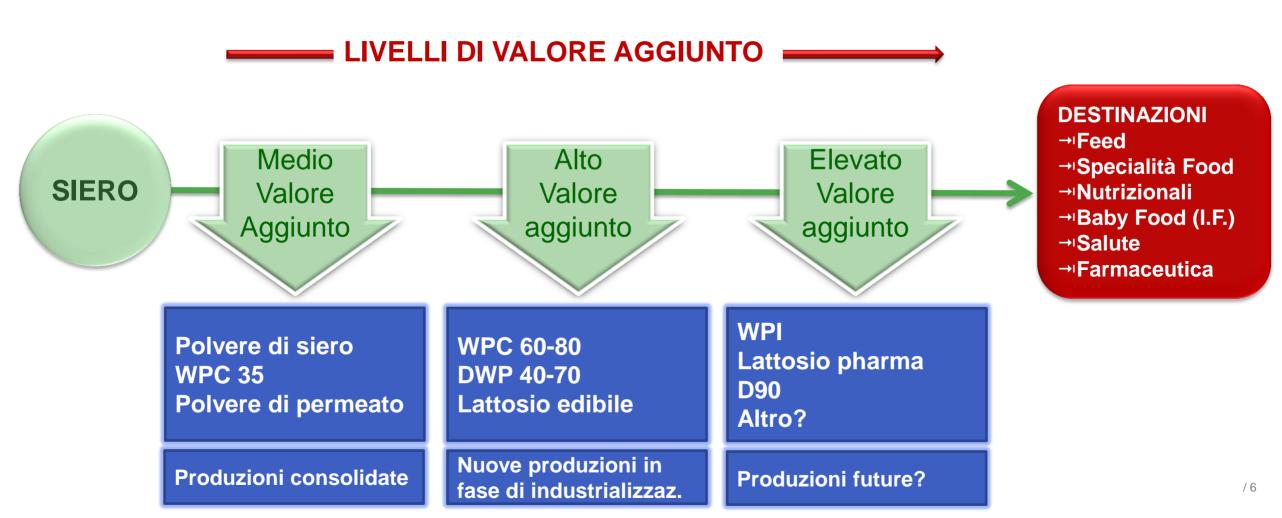
Le tecnologie applicabili si sono moltiplicate e sono tuttora in fase evolutiva.

Pertanto le infrastrutture di produzione dei derivati di siero sempre più frequentemente sono **COMBINAZIONI DI TECNOLOGIE**, e sempre meno organizzate per dorsali tecnologiche convenzionali. Il che rende arduo qualsiasi tentativo di classificazione.

Questa breve presentazione si prefigge - alla luce delle condizioni italiane- di fornire indicazioni industriali "fattibili", tralasciando i derivati avanzati che sono saldamente gestiti da grandi operatori internazionali che si caratterizzano per elevate capacità tecnologiche, dimensioni industriali e soprattutto ramificazione delle reti commerciali.

DOVE STA ANDANDO IL SIERO in Italia?

DA	A
RIFIUTO	→ PRODOTTO
"FEED"	→ "FOOD" e "BABY FOOD"
MONOPRODOTTO	→ MOLTEPLICI DERIVATI
BASSO VALORE AGGIUNTO	→ MEDIO VALORE AGGIUNTO
TECNOLOGIE SEMPLICI	→ TECNOLOGIE COMPLESSE
LIMITATE CONOSCENZE TECNOLOGICHE	→ PROGRAMMI DI RICERCA (Università, Privati)



DOVE STA ANDANDO IL SIERO?

DOVE STA ANDANDO IL SIERO IN ITALIA?

GESTIONE SIERI IN ITALIA

CASEIFICI

Provvedono a fornire i sieri. A seconda delle dimensioni, i sieri possono essere più o meno condizionati ("preparati") e preconcentrati. Il siero 3x è il prodotto di riferimento.

CENTRI DI RACCOLTA SIERI

Ricevono sieri preparati o preconcentrati e provvedono ad ulteriori separazioni-concentrazioni mediante membrane od evaporazione.

Infrastrutture > 1.000 t/g siero equivalente: alcune unità in Italia.

STABILIMENTI DERIVATI SIERO Ricevono sieri concentrati e provvedono ad ulteriori trattamenti di processo, quali evaporazione e polverizzazione.

Infrastrutture > 2.000 t/g siero equivalente: poche unità in Italia. Destinato prevalentemente all'estero.

LA SPECIFICITA' ITALIANA

Situazioni industrali indicative

Masse critiche, tecnologie di trasformazione, costi/benefici

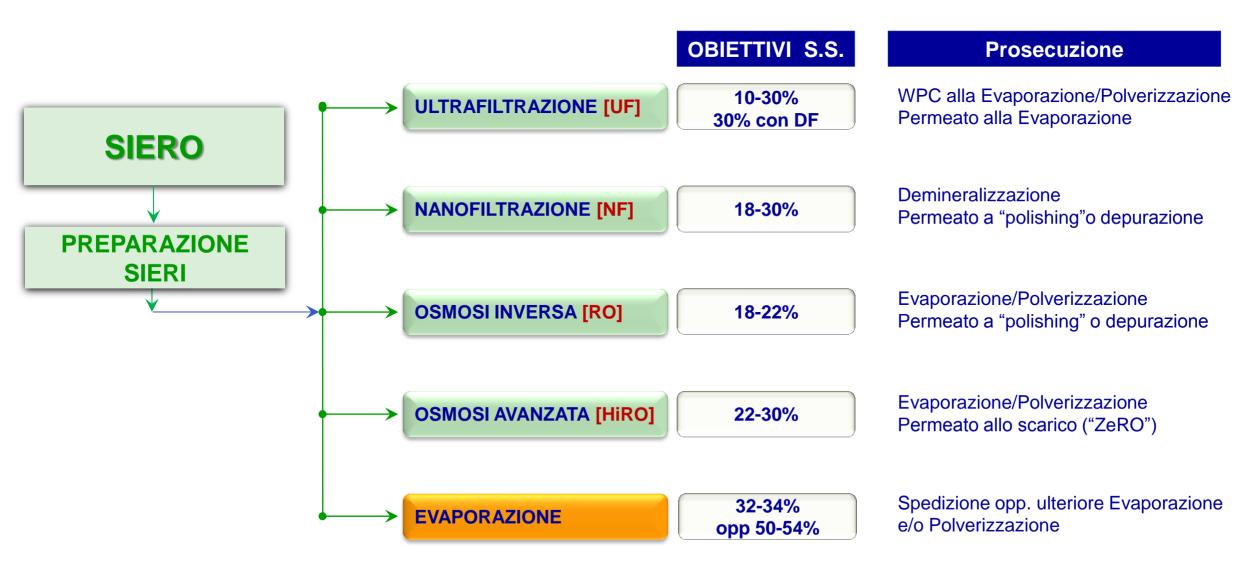
	Disponibilità siero t/g	Trattamenti	Prodotto
Α	< 100	Preparazione-preconcentrazione?	Da spedire
В	100-500	Preparazione e preconcentrazione	Da spedire
C	500-1.000	B + Evaporazione	Da spedire
D	> 1.000	C+ Polverizzazione	Polveri Feed/Food
Е	> 2.000	D + Polverizzazioni specializzate	Polveri Feed/Food/infant F.
	La specificità Italiana	Bassa qualità della materia "prima" Quantità disponibili ridotte, dimensio	ni aziendali limitate

La specificità Italiana
FATTORI LIMITANTI

Bassa qualità della materia "prima"

Quantità disponibili ridotte, dimensioni aziendali limitate

Cultura tecnologica minimale


Dispersione sul territorio e conseguenti costi di trasporto

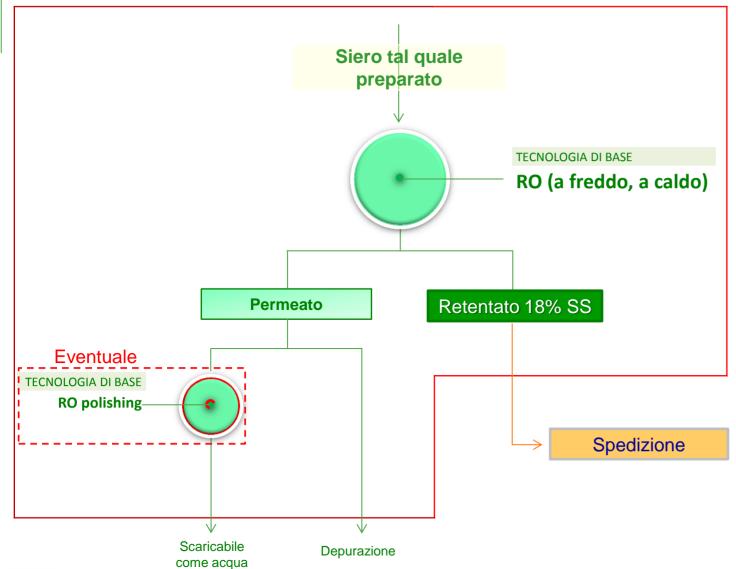
Risorse finanziarie limitate (conseguente inerzia all'investimento)

Gestione dei reflui

LE FILIERE DI PRECONCENTRAZIONE SIERI IN ITALIA

TECNOLOGIE di PRODUZIONE

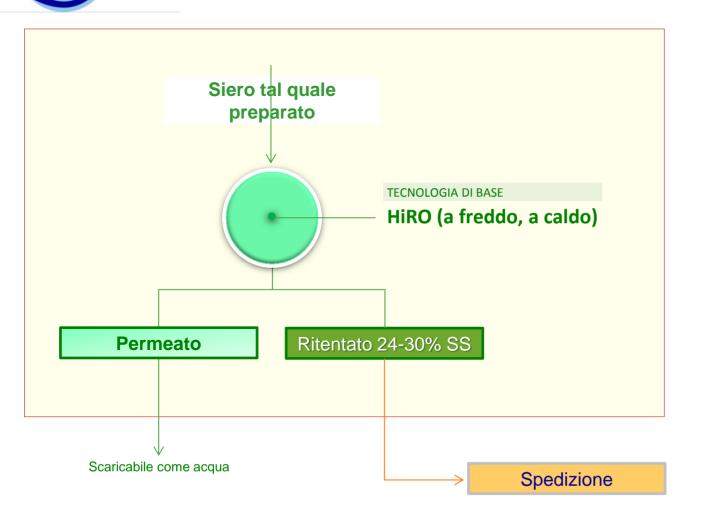
PRECONCENTRAZIONE SIERI mediante RO e/o Evaporazione


Principale presupposto
RISPARMIO di COSTI di TRASPORTO



PRECONCENTRAZIONE SIERI

Osmosi Inversa (RO) convenzionale



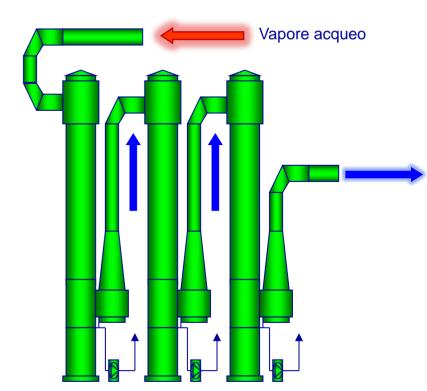
FATTORE DI CONCENTRAZIONE	3x		
COMPOSIZIONE	Ingresso	Retentato	Permeato
COMI OSIZIONE	%	%	%
SOLIDI TOTALI	6,00	18,00	ng
Azoto (N) proteico totale	0,62	2,25	
Azoto non proteico (NPN)	0,20	0,54	COD
Lattosio	4,50	13,78	< 150 mg/l
Acidi	0,15	0,45	
Ceneri	0,50	1,80	
Grasso	0,05	0,15	
Bilancio di massa (Kg)	1.000	333	667

Osmosi Inversa avanzata (HiRO: high efficiency)



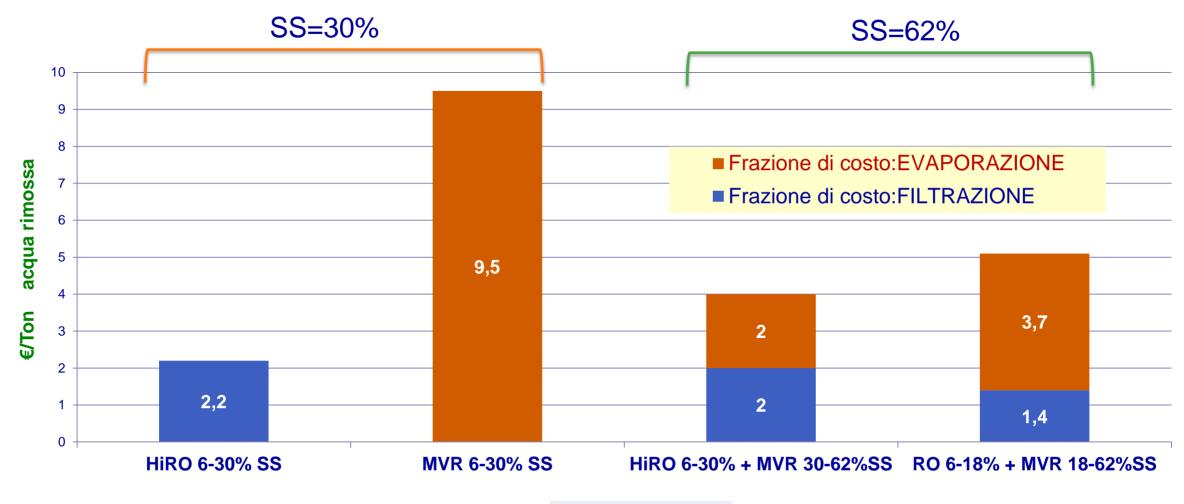
FATTORE DI CONCENTRAZIONE	5x		
COMPOSIZIONE	Ingresso %	Retentato %	Permeato %
SOLIDI TOTALI	6,00	30,00	
Azoto (N) proteico totale	0,60	3,04	
Azoto non proteico (NPN)	0,20	0,75	
Lattosio	4,50	22,70	COD
Acidi	0,15	0,75	< 150 mg/l
Ceneri	0,50	2,50	
Grasso	0,05	0,25	
Bilancio di massa (Kg)	1.000	198	823

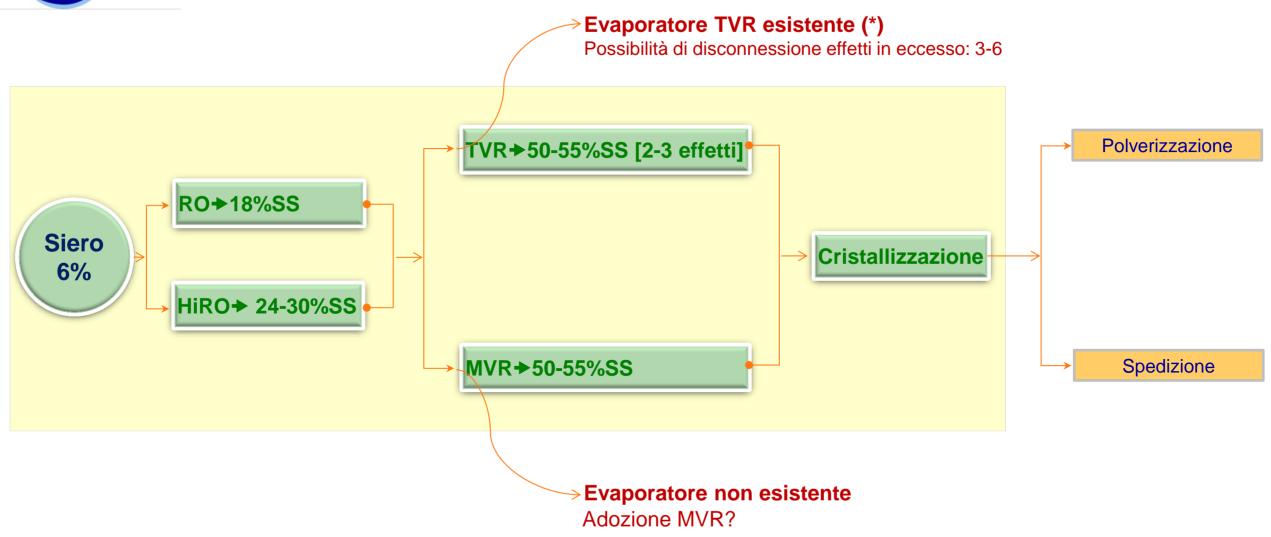
Combinazione RO + Evaporazione


La concentrazione per Evaporazione è una tecnologia "storica", effettuata solitamente con tipologie TVR (Thermal Vapour Recompression). Tuttavia è in corso una evoluzione che sta portando la tipologia MVR (Mechanical Vapour Recompression) a prevalere nelle installazioni di oggi a fronte di grandi volumi.

Tradizionalmente alimentate con siero tal quale, oggi le due tipologie MVR e TVR tendono ad essere utilizzate con sieri preconcentrati (RO, NF, UF, NF+ED, etc.)

SIERO TAL QUALE	MVR	TVR – 3 stadi	
Rimozione acqua	10 t/h	10 t/h	
Elettricità	160 kWh	-	
Vapore	-	2 t/h	

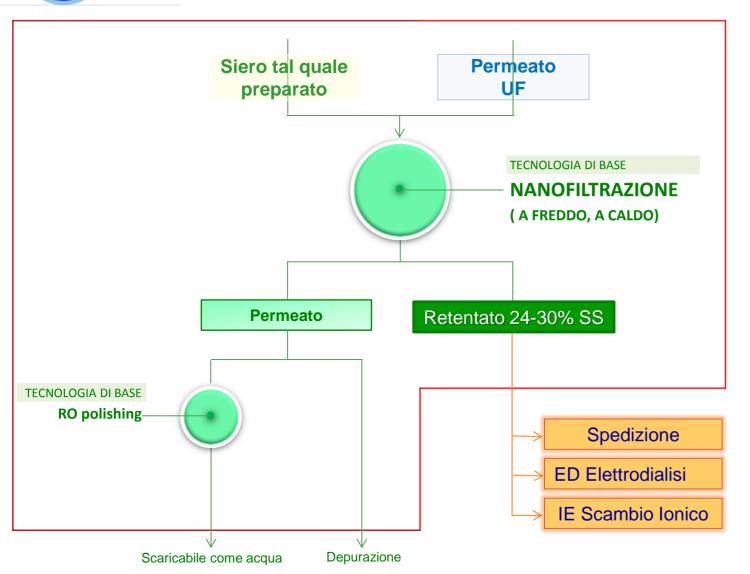

TVR- 3 (o più) stadi



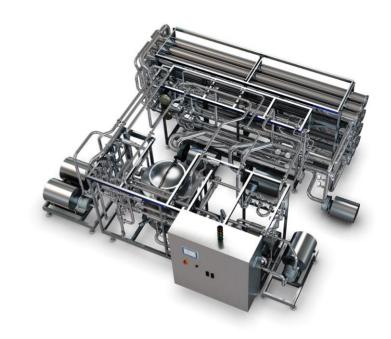
CONFRONTO FRA SCENARI DI PRODUZIONE

Costi di rimozione acqua

TECNOLOGIE di PRODUZIONE

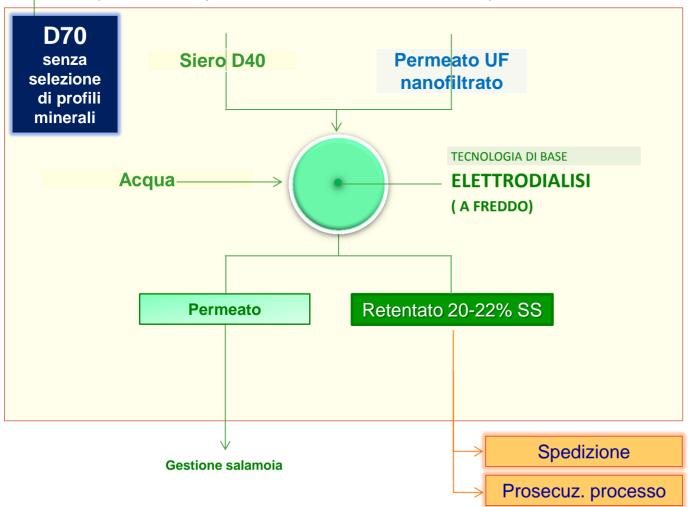

PRECONCENTRAZIONE PER DEMINERALIZZAZIONE

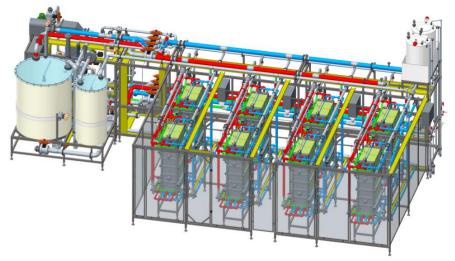
Principale presupposto
CONFERIMENTO DI VALORE AGGIUNTO



Demineralizzazione convenzionale (parziale)

FATTORE DI CONCENTRAZIONE 4X			
	Ingresso	Retentato	Permeato
COSTITUENTI	%	%	%
Solidi totali	6,42	24,15	0,33
Ceneri	0,60	1,7	0,26
Azoto proteico totale (N)	0,62	3,15	0,00
Azoto non proteico (NPN)	0,20	0,76	0,00
Lattosio	4,82	19,10	0,07
Grasso	0,05	0,21	0,00
Bilancio di massa Kg	1.000	250	750

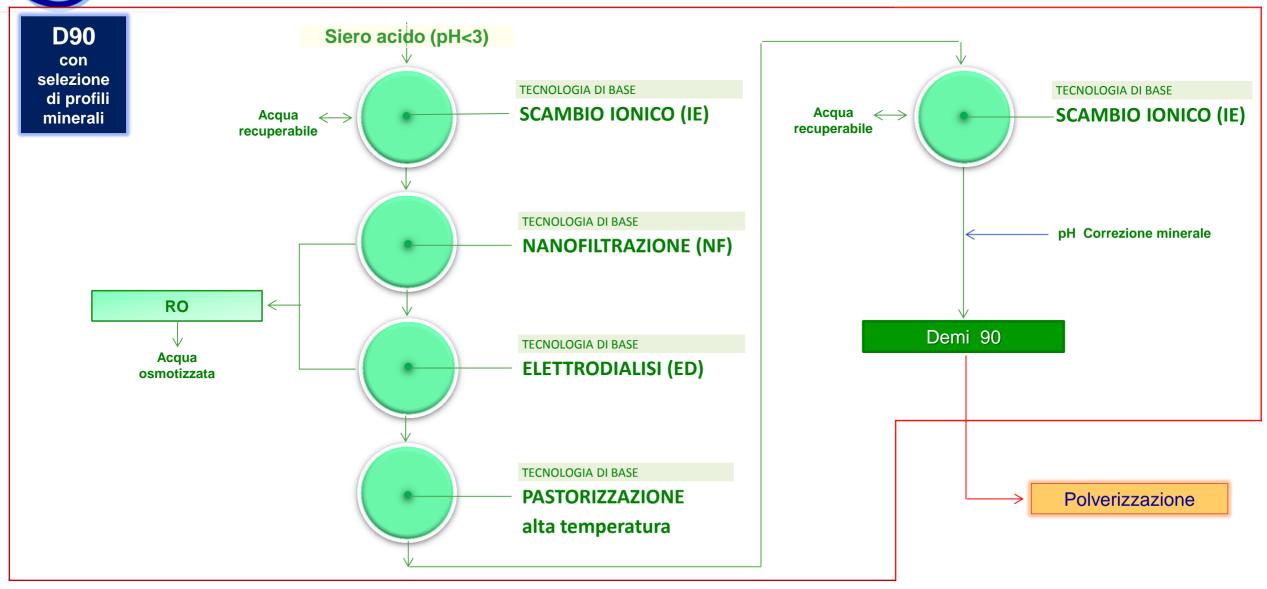



DEMINERALIZZAZIONE SIERI

Demineralizzazione combinata: Nanofiltrazione ed Elettrodialisi / 1

(alternativa/prosecuzione: Scambio ionico)

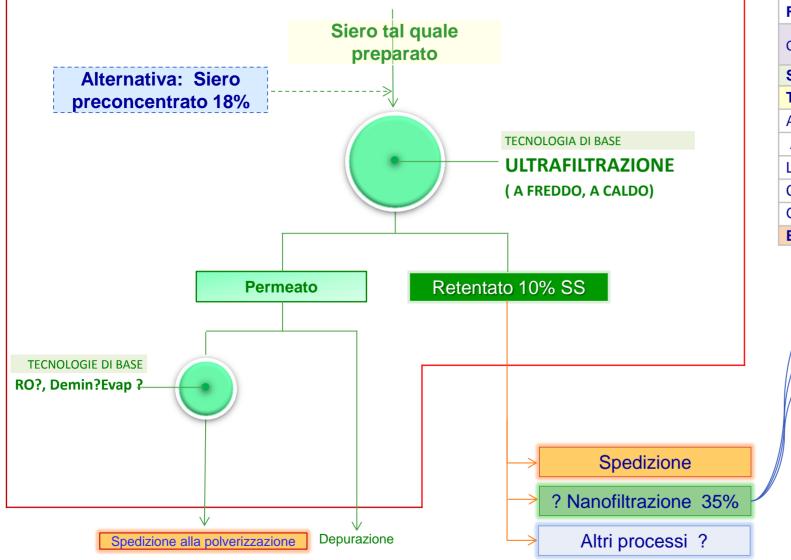
COSTITUENTI	Concentrato NF FC=3,0	Concentrato ED D70
Solidi totali	22,00	21,39
Ceneri	1,40	0,53
Proteine totali	3,57	3,66
Proteine vere N	3,10	3,23
Azoto non proteico (NPN)	0,47	0,43
Lattosio	16,20	16,72
Acidi	0,65	0,29
Grasso	0,18	0,19
pH	5,9	5,8
Bilancio di massa Kg	1000	940



Esempio di unità ED in batch a membrane eterogenee

DEMINERALIZZAZIONE SIERI

Demineralizz.e combinata: IE/NF/ED/RO/Pastorizz.e / 2 ALTO VALORE AGGIUNTO


TECNOLOGIE di PRODUZIONE

WPC LIQUIDE mediante Ultrafiltrazione (e Diafiltrazione)

Principale presupposto
CONFERIMENTO DI VALORE AGGIUNTO

PRODUZIONE WPC Ultrafiltrazione (UF) per WPC35


FATTORE DI CONCENTRAZIONE 5x ca			
COSTITUENTI	Ingresso %	Retentato %	Permeato %
Solidi totali	6,2	9,90	5,37
Totale Proteine/Totale Solidi		32%	
Azoto proteico totale (N)	0,6	3,17	0,02
Azoto non proteico (NPN)	0,2	0,30	0,18
Lattosio	4,8	5,39	4,67
Ceneri	0,55	0,78	0,50
Grasso	0,05	0,27	0,00
Bilancio di massa Kg	1.000	180	820

- Riduzione volumi di trasporto
- Incremento Proteine/SS
- Leggera riduzione SS (Sali minerali)

Ultrafiltrazione (UF) per WPC80

FATTORE DI CONCENTRAZIONE 12x ca				
COSTITUENTI	Ingresso %	Retentato %	Permeato %	
Solidi totali	20,00	28,54	13,82	
Totale Proteine/Totale Solidi		82,10%		
Azoto proteico totale (N)	2,67	23,0	0,58	
Azoto non proteico (NPN)	0,67	0,47	0,49	
Lattosio	15,1	3,35	11,62	
Acidi	0,5	0,11	0,39	
Ceneri	1,67	0,53	1,24	
Grasso	0,15	2,02	0,00	
Bilancio di massa Kg	1.000	60	940	
di cui Siero	736			
Acqua	263			

Possibile strategia di produzione < WPC80

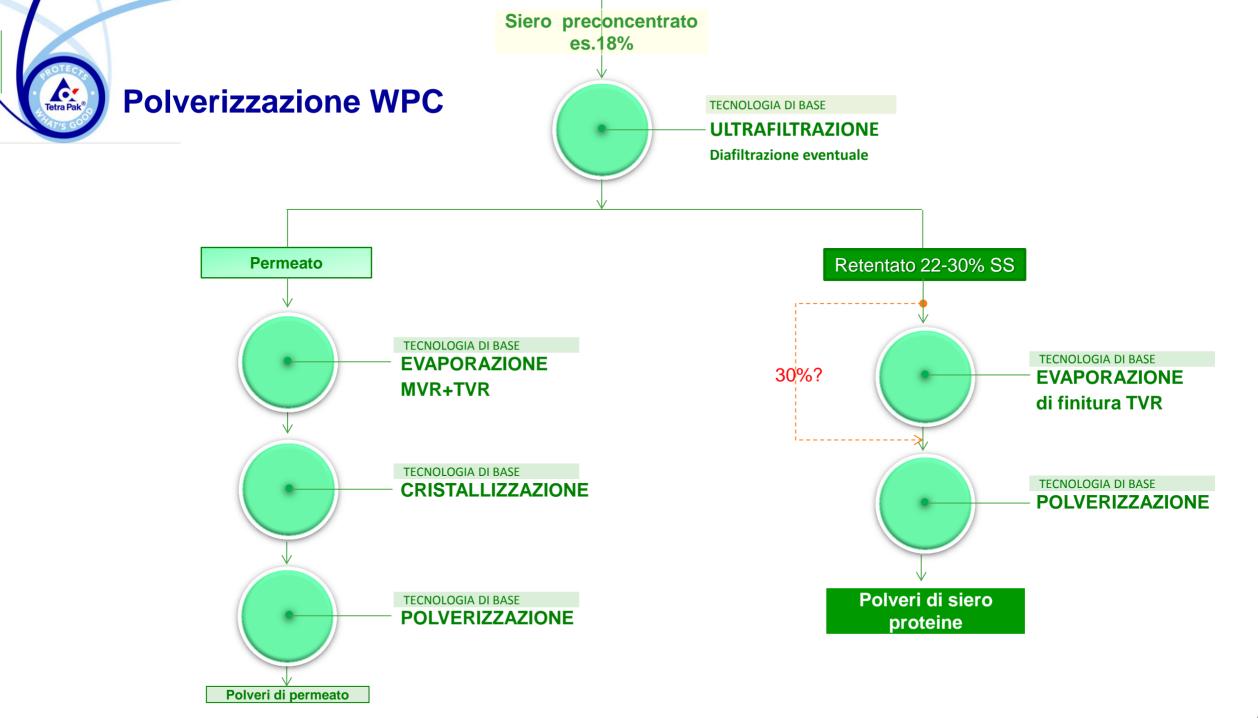
WPC80 + Permeato "Concentrato" = WPC 35

Composizione WPC mediante UF (*)

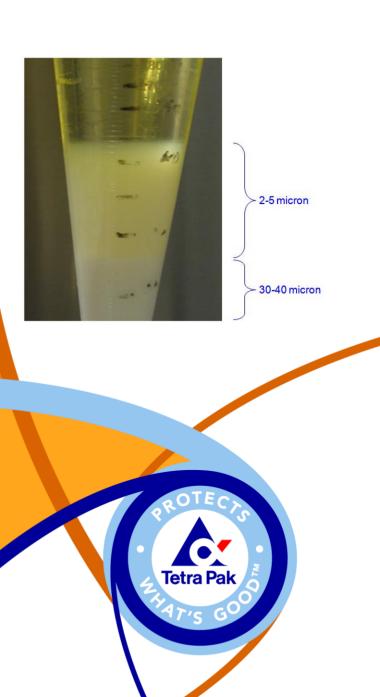
	Siero t. q.	WPC 35%	WPC 60%	WPC 80%
Grasso	0,05	0,3	1,0	2,0
Proteine totali	0,80	3,5	11,75	24,0
Azoto non proteico	0,20	0,25	0,28	0,40
Lattosio	4,75	5,1	5,3	1,5
Ceneri	0,50	0,7	1,0	1,30
Solidi totali	6,10	9.6**	19**	~30***
CF (fatttore di concentrazione)	-	5,5	20	44
Quantità /Liquidi l/h	50.000	9.100	2.500	1.140

^{*} Valori relativi al trattamento a freddo di siero dolce (per un idoneo livello di WPC nella polvere)

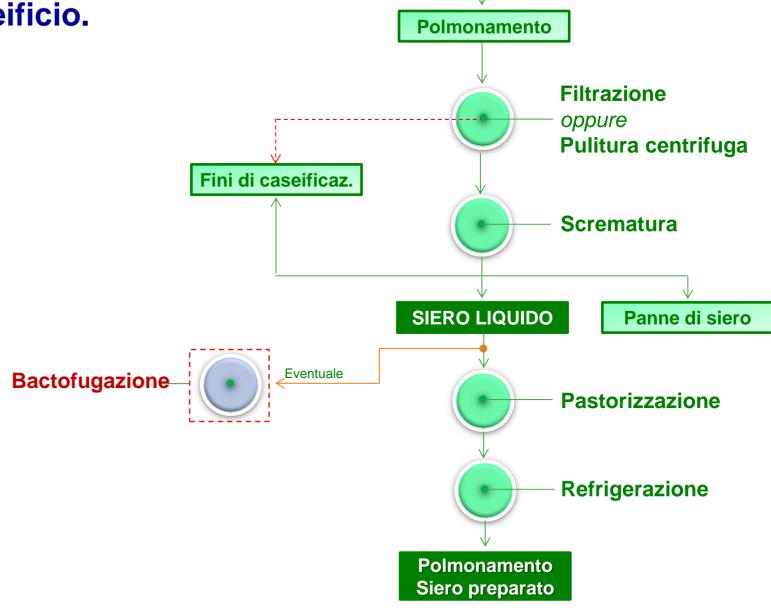
^{**} Con preconcentrazione RO opp. NF un più alto tenore di solidi nel Retentato può essere raggiunto per le 35 / 50 / 60


^{***} Il Retentato viene inviato direttamente alla polverizzazione (il processo richiede acqua per la Diafiltrazione)

TECNOLOGIE di PRODUZIONE


POLVERI DI SIEROPROTEINE DA WPC LIQUIDE

Technologies update



DERIVATI di SIERO La preparazione dei sieri

Il nemico N° 1 della qualità del siero è…il tempo!

Siero dalla caseificazione

Governare il siero per conseguire l'alta qualità

Il nemico N° 1 del siero è ... il tempo!

Collettazione siero

Il siero dalla caseificazione è poco stabile ed è opportuno un sistema di collettazione-polmonamento in diretta, possibilmente lavabile ad intervalli.

Evitare lunghi tempi di polmonamento con fini

Rimozioni fini

Migliora l'efficienza di scrematura ed i trattamenti di filtrazione a membrane successive. Le pulitrici centrifughe sono più efficienti dei filtri rotativi.

Efficienza di scrematura

Essenziale per la qualità. Migliora le filtrazioni a membrane e soprattutto i processi di polverizzazione. La scrematura è più efficiente se si effettua in tempi brevi.

Bactofugazione

Tecnologia emergente: svolge il compito di desporificazione ed in seconda funzione quella di debatterizzazione.

Pastorizzazione

Essenziale per prevenire la fermentazione ed inattivare fermenti e caglio. Sessioni di lavoro non superiori a 6-8 ore (con brevi lavaggi intermedi)
Temperature non superiori a 72° C.

Refrigerazione

Refrigerazione <6°C per stoccaggio. Se destinato alla filtrazione a membrane, raffreddamento sino a 10-15°C (salvo refrigerare il retentato).

Stoccaggio finale

Inviare il siero preparato il più presto possibile alle fasi di processo successive.

DERIVATI DI SIERO SINTESI DELLE INNOVAZIONI

Derivati dei sieri SINTESI DELLE INNOVAZIONI

Negli ultimi 5-10 anni, una ampia serie di tecnologie innovative sono entrate in produzione negli stabilimenti europei.

- RO avanzata (HiRO) e ZeRO
- Evaporazione MVR alta concentrazione
- WPC: UF con DF (diafiltrazione)
- Demineralizzazione sieri con Elettrodialisi a membrane eterogenee
- Filtrazione a freddo, con miglioramento della qualità delle sieroproteine
- Alta concentrazione mediante NF delle WPC 80/ WPI sino al 37% SS
- Rimozione grasso mediante MF polimerica nelle produzioni di WPI

SINTESI DELLE INNOVAZIONI / 2

- Combinazione RO(NF) con evaporatore MVR "single pass" per alti livelli di concentrazione
- Membrane spiral Altri sviluppi più elevata purezza delle proteine nelle produzioni Altri sviluppi
- Processi di esse sono in corso!!
 Sono in corso!!
- Separazione di 2'... attoglobulina
- Processi di maggior effici no la raffinazione del lattosio, con miglioramenti delle rese.
- Combinazioni di filtrazioni a membrana consentono separazioni sempre più fini, con virtuale sparizione del COD, con consistenti recuperi di acqua.

Questa presentazione potrebbe essere in larga parte superata in occasione del prossimo convegno sul siero......

Grazie per l'attenzione

ermanno.davico@tetrapak.com

Derivati dei sieri SINTESI DELLE INNOVAZIONI

Negli ultimi 5-10 anni, una ampia serie di tecnologie innovative sono arrivate negli stabilimenti.

- •Filtrazione a freddo, con miglioramento della qualità delle sieroproteine
- •Alta concentrazione mediante NF delle WPC 80/ WPI sino al 37% SS
- •Rimozione grasso mediante MF polimerica nelle produzioni di WPI
- •Combinazione RO(NF) con evaporatore MVR "single pass" per alti verti a preparazione
- •Membrane spiralate con minori perdite e più elevata purezza produzioni di WPC/WPI/Latte magro.
- •Processi di essiccamento "free flowing" delle polveri di per-
- •Separazione di alfa-lattoalbumina e beta-lattoglobulina
- Processi di maggior efficienza nella raffinazione del lattosica
- •Combinazioni di filtrazioni a membrana consentono separazioni virtuale sparizione del COD e recuperi di acqua.

Altri sviluppi sono in corso!!

Derivati dei sieri SINTESI DELLE INNOVAZIONI

Negli ultimi 5-10 anni, una ampia serie di tecnologie innovative sono arrivate negli stabilimenti.

•Processi di essiccamento "free flowing" delle polveri di permeato

•Separazione di alfa-lattoalbumina e beta-lattoglobulina

Processi di maggior efficienza nella raffinazione del lattosio, co

•Combinazioni di filtrazioni a membrana consentono separa

virtuale sparizione del COD, con consistenti recuperi di acqua

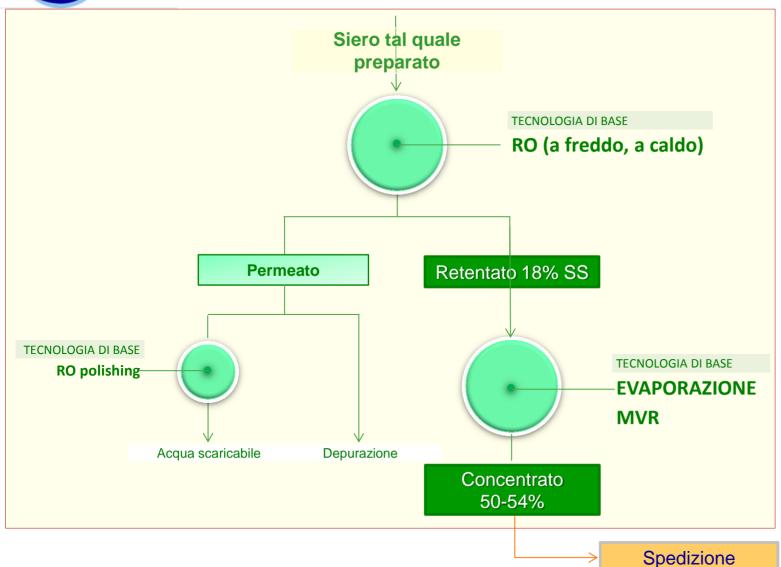
Altri sviluppi sono in corso!!

Concentrazione combinata RO + Evaporazione

Mentre la evaporazione MVR tende a salire a più alti livelli di concentrazione, anche le preconcentrazioni a membrane tendono ad occupare lo spazio una volta detenuto dalla evaporazione, ovviamente a costi operativi maggiormente ridotti.

Al punto che la preconcentrazione al 30-32% di SS può essere raggiunta praticamente mediante RO.

A livello industriale, le tendenze sono:


Obiettivo SS Investimento possibile	
30-32%	Unità HiRO
50-54%	Unità RO+Evaporatore MVR (*)

(*) selezionando la combinazione operativa migliore fra i due sistemi

Concentrazione combinata RO+Evaporazione (SS da 18 a 54%)

FATTORE DI CONCENTRAZIONE		3x
	Ingresso	Uscita
	%	%
Grasso	0.15	0,48
Azoto (N) proteico totale	2.25	7,41
Azoto non proteico (NPN)	0.54	1,8
Lattosio	13.78	45,52
Ceneri	1.80	5,8
Solidi totali	18.00	61,0

Governare il siero per conseguire l'alta qualità

Il nemico N° 1 del siero è ... il tempo!

Governare il siero per conseguire l'alta qualità

Il nemico N° 1 del siero è ... il tempo!

DOVE STA ANDANDO IL SIERO in Italia?

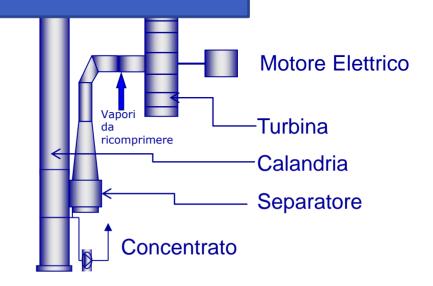
DA	A
RIFIUTO	→ PRODOTTO
"FEED"	→ "FOOD" e "BABY FOOD"
MONOPRODOTTO	→ MOLTEPLICI DERIVATI
BASSO VALORE AGGIUNTO	→ MEDIO VALORE AGGIUNTO
TECNOLOGIE SEMPLICI	→ TECNOLOGIE COMPLESSE
LIMITATE CONOSCENZE TECNOLOGICHE	→ PROGRAMMI DI RICERCA (Università, Privati)

La concentrazione per Ev Recompression). Tuttavia a prevalere nelle installaz

> Il principio prevede c termico vengano con nella calandria dell'ev Un turbina increment Il processo di ricomp vapore vivo.

MVR si basa sul principio di ricomprimere mediante un compressore i vapori (a bassa pressione bassa temperatura) che sono rilasciati dal liquido in evaporazione. Il compressore ricomprime i vapori innalzando pressione e temperatura, di modo che gli stessi vengano utilizzati nel processo di evaporazione come fonte di riscaldamento.

Il processo si sostiene praticamente con l'energia elettrica richiesta dal compressore, senza esigenze di vapore vivo. MVR è la tecnologia di maggior efficienza con elevato livello di energy saving.

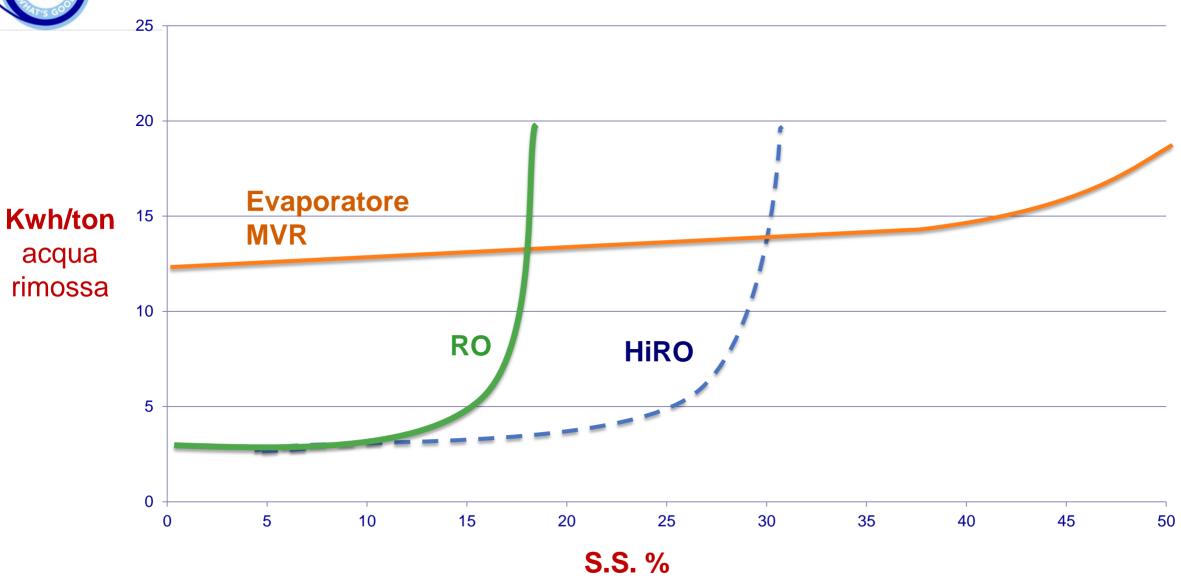

I Vapour Recompression)

Alimentazione

La energia richiesta del processo consiste praticamente in elettricità.

La soluzione MVR si connota per l'elevata efficienza energetica, ed è applicata nella produzione di volumi medio-alti.

Con lo sviluppo del "MVR multipass", tende quindi a superare l'eventuale necessità di una sezione TVR (Thermal vapour recompression) per le alte concentrazioni.



		Whey	Whey	RO-NF	RO-NF
		6->32%	6->54%	20-54%	20->62%
	Product Inlet	50.000 l/h	50.000 l/h	15.000 l/h	15.000 l/h
Multiple effects (3? 6?)	Inlet ° C				
	Outlet °C				
	Steam (kg/h)				
	kWh				
	Running hours				
	CIP hours				
MVR	Inlet ° C				
	Outlet °C				
	Steam (kg/h)				
	kWh				
	Running hours				
	CIP hours				

RIMOZIONE ACQUA IN TERMINI DI CONSUMI ELETTRICI

LA SPECIFICITA' ITALIANA

Masse critiche, tecnologie di trasformazione, costi/benefici

Situazioni industrali indicative

Disponibilità siero t/g

Trattamenti

Prodotto

La specificità Italiana

FATTORI LIMITANTI

Bassa qualità della materia "prima"

Quantità disponibili ridotte, dimensioni aziendali limitate

Cultura tecnologica minimale

Dispersione sul territorio e conseguenti costi di trasporto

Risorse finanziarie limitate (conseguente inerzia all'investimento)

Gestione dei reflui

Concentrazione combinata RO + Evaporazione / Scelte industriali attuali

Volumi	Processo		SS%	COD
> 500 t/g	RO —	Spedizione	18%	<150
500 -1.000 t/g	HiRO-	Spedizione	24-30%	<150
		<u> </u>		1100
1.000-2.000 t/g	RO/HiRO → Evaporazione → Cristallizzazione →	Spedizione	50-55%	<150 +Condense